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1. Introduction and summary

In this paper we are addressing the question whether closed bosonic string theory has a

stable vacuum. This is of course a non-perturbative problem that needs to be approached

in the context of closed string field theory (CSFT) [1]. Its difficulty is two-fold. Firstly, the

action of CSFT is non-polynomial in the string field. Secondly, the string field is composed

of infinitely many components. As an analytic solution of CSFT seems at present out of

reach (even in the light of the newly-discovered solution for the vacuum of open string field

theory [2, 3]), we are bound to numerical methods. The first difficulty is probably the most

serious but it is believed that truncating the action to a finite power of the string field may

furnish a good approximation. The second difficulty is treated by level truncation, keeping

in the string field only component fields whose masses are not greater than a given level.

Until recently, only the quadratic and cubic terms of the CSFT action could be com-

puted. A level truncation calculation at this order was done by Kostelecký and Samuel

in [4]. They truncated the string field to the massless level, keeping the tachyon, graviton

and auxiliary fields, and found a locally stable vacuum with a positive tachyon expectation

value. It is now understood [5] that to cubic order we are missing some important interac-

tions, ones that can couple fields whose left-moving and right-moving ghost numbers are

not equal. The first scalar field having this property is the ghost-dilaton which plays a

central role.

In [6], Belopolsky endeavored the computation of the tachyon effective potential up

to quartic order. There were two terms to calculate. Namely the contact term of four

tachyons, and the Feynman diagrams with two cubic vertices and four external tachyons.

Those terms were combined into one integral over the whole (i.e. not reduced) moduli space

– 1 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
9

of spheres with four punctures. Belopolsky then found that this effective potential didn’t

have any local minimum, the sign and magnitude of the quartic tachyon term were such

as to destroy the minimum existing at cubic order. There is however an important flaw

in the question of the tachyon effective potential itself. As already mentioned, Yang and

Zwiebach have shown in [5], that the zero-momentum ghost dilaton must be included in the

tachyon condensate as soon as we are considering quartic terms. As this state is massless,

it cannot be integrated out in forming the tachyon effective potential. Instead one should

consider the effective potential of the tachyon and dilaton.

The computation of the quartic term in the CSFT action was made possible in [7].

This paper solves numerically the geometry of the vertex and gives its solution in terms of

fits which can be used to calculate the coupling of any four states. The results of [7] were

successfully checked in [8] by verifying the cancellation of the effective coupling of marginal

fields to quartic order, and in [9] by checking the cancellation of the effective term with

four dilatons.

Yang and Zwiebach then proceeded in [5] to look for a nonperturbative vacuum. This

time the dilaton was taken proper care of. They truncated the string field to level four,

which included the tachyon (level zero), the dilaton (level two) and four massive fields at

level four, and they found a stable vacuum with positive tachyon and dilaton expectation

values. The value of the potential at this minimum is negative but seemed to approach

zero as the level was increased (and it is also shallower than the vacuum found with the

action truncated to cubic order). In the same paper, they studied the low-energy effective

action of the tachyon, dilaton and metric, and found that a stable vacuum must have

vanishing potential. They went on to propose that this is valid for the full theory, and

observed that the numerical results seemed to confirm it. In such low-energy models,

a rolling tachyon solution is found. For a large class of potential, the dilaton rolls to

positive values corresponding to strong coupling until the universe meets its fate in a big

crunch [10]. The natural interpretation of this vacuum would then be that all the degrees

of freedom of closed string theory have collapsed, in particular the metric, and thus space-

time, have disappeared. One could then imagine that solitons of CSFT would correspond

to spacetimes of lower dimensionality. Some evidence that such solitons exist in CSFT

at quartic order was given in [11]. This interpretation is supported by open-closed p-adic

string theory [12].

In this paper, we continue the level truncation calculation of [5] and push the computa-

tion to level ten. At this level, the string field has a total of 158 fields and the computation

of the potential must be automatized. We use the symbolic calculator Mathematica to

perform antighost insertions, to calculate correlators (and generate the conservation laws

used to calculate them), and to integrate the given results on the reduced moduli space

using the results of [7]. The results for the nonperturbative vacuum are not confirming

the proposition [5] that its potential should vanish. Instead we see that if we do level

truncation in the same way as in [5], the depth of the potential oscillates with the level,

and the shallowness at level four is essentially an illusion as the potential takes a dip at

level six and then never approaches zero as closely as it did at level four. We then use a

different truncation scheme, and find results that are consistent with the former scheme
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but converge better. This leads us to conclude that CSFT truncated to quartic order has

a nonperturbative vacuum with a nonzero potential, given by (3.13).

We conclude this paper by asking how this result would change if we include terms of

higher order in the action. In [13], one of us has solved numerically the geometry of the

five-point vertex, and checked the result with the dilaton theorem. At this time however

only the terms coupling five tachyons or five dilatons have been calculated (other terms

will be done in [14]). Although we should really take terms at higher level as well, we are

curious and look at how our results change if we include the coupling of five tachyons. As

expected from the sign of this term, the potential at the vacuum is pushed towards zero

(but is still negative and nonzero). More surprisingly, and perhaps hinting at something

important, the oscillations mentioned before are tamed.

The paper is structured as follows: In the rest of this section we briefly summarize

how to compute the quartic potential of CSFT. In section 2 we generalize the method of

conservation laws to compute correlators on the sphere with four punctures. We describe

our results of level truncation in section 3, and finally we include the term with five

tachyons and discuss our results in section 4.

We shortly summarize how to calculate quartic multilinear functions, more details can

be found in [9, 5]. In our conventions α′ = 2, and the closed string field theory action is

S = −
1

κ2

(

1

2
〈Ψ|c−0 QB|Ψ〉 +

1

3!
{Ψ,Ψ,Ψ} +

1

4!
{Ψ,Ψ,Ψ,Ψ} + · · ·

)

, (1.1)

where QB is the BRST operator, c±0 = 1
2 (c0 ± c̄0), and {. . .} are the multilinear string

functions [1]. For the CSFT action to be consistent, the string field |Ψ〉 must satisfy

(L0−L̄0)|Ψ〉 = 0 and (b0− b̄0)|Ψ〉 = 0. We will be working in the Siegel gauge (b0+ b̄0)|Ψ〉 =

0. As was shown in [5], the minimal subspace of the Hilbert space for the string field to

live in when we are considering tachyon condensation, is the one generated by the scalars

obtained by application on the vacuum of Virasoro, ghost and antighost oscillators, and

with the additional constraint Ψ = −Ψ?. The action of ? on a given state changes all

left-moving oscillators (Virasoro, ghost and antighost) into right-movers and vice-versa,

without changing their orders, and changes the factor in front of the state by its complex

conjugate.

To calculate the multilinear function of four states |Ψ1〉, . . . , |Ψ4〉, one inserts them on

the sphere at the points z = 0, z = 1, z = ∞ and z = ξ = x+y i, with an antighost insertion

BB?, and one then integrates the corresponding correlator over the reduced moduli space

of four-punctured spheres V0,4. It is reduced in the sense that one excludes the spheres

that can be obtained as Feynman diagrams built with three-vertices. More explicitly

{Ψ1,Ψ2,Ψ3,Ψ4} =
1

π

∫

V0,4

dx ∧ dy〈Σ|BB?|Ψ1〉|Ψ2〉|Ψ3〉|Ψ4〉 , (1.2)

where the antighost insertions are given by ([9])

B =

4
∑

I=1

∞
∑

m=−1

(

BI
mb(I)

m + CI
mb̄(I)

m

)

, B? =

4
∑

I=1

∞
∑

m=−1

(

CI
mb(I)

m + BI
mb̄(I)

m

)

, (1.3)
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whose coefficients BI
m and CI

m are determined by the four maps from the local coordinates

wI to the uniformizer z

BI
m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξ
, CI

m =

∮

dw

2πi

1

wm+2

1

h′
I

∂hI

∂ξ̄
(1.4)

z = hI(wI ; ξ, ξ̄) = zI(ξ, ξ̄) + ρI(ξ, ξ̄)wI +
∞

∑

n=2

αn,I(ξ, ξ̄) (ρIwI)
n . (1.5)

Note that for the puncture at infinity, we should use the coordinate t = 1/z instead of z.

Our notation here is a bit different from the notation of [9, 5]. The βI , γI and δI used

there are related to αm,I by

βI ≡ α2,I , γI ≡ α3,I , δI ≡ α4,I . (1.6)

The αm,I notation is more convenient at high level because the computation of multilinear

functions of fields of level L requires αm,I with m = 2, . . . , L/2+2, in our case m = 2, . . . , 7.

These coefficients can be deduced from the quadratic differential ϕ = φ(z)(dz)2 that gives

the metric of the interaction worldsheet. Namely it must have poles of second order with

residue minus one at the punctures, and its critical graph must be compact (for more

details see [16, 17, 6, 7]). For the four-vertex, it is given by

φ(z) = −
(z2 − ξ)2

z2(z − 1)2(z − ξ)2
+

a(ξ, ξ̄)

z(z − 1)(z − ξ)
. (1.7)

The quadratic differential is thus determined by a(ξ, ξ̄), whose solution was constructed

numerically in [7]. The expressions of αm,I follow by requiring that in the local coordinates

wI , the quadratic differential takes the form φ(wI) = −1/w2
I . All in all the integrand of

(1.2) can be expressed as an expression involving ξ, a, ∂a/∂ξ, ∂a/∂ξ̄, and ρI , all of which

can be directly estimated from the fits given in [7], and correlators on the sphere. Our

conventions for these correlators are the same as in [9, 5], namely

〈c(z1)c(z2)c(z3)c̄(w̄1)c̄(w̄2)c̄(w̄3)〉 = −2〈c(z1)c(z2)c(z3)〉o · 〈c̄(w̄1)c̄(w̄2)c̄(w̄3)〉o , (1.8)

and 〈c(z1)c(z2)c(z3)〉o = (z1−z2)(z1−z3)(z2−z3) is the open string field theory correlator.

These will be calculated with the help of the conservation laws described in section 2

The way to do the integration in (1.2) was described in [9]. The whole domain V0,4

can be decomposed into six regions and their complex conjugates, such that

∫

V0,4

=

∫

A

+

∫

1
A

+

∫

1−A

+

∫

1
1−A

+

∫

1− 1
A

+

∫

A
A−1

+ complex conjugate . (1.9)

All of these integrals can be expressed as integrals over A after pulling back their integrand

(see [9] for more details). And at last the two-dimensional region A was described in [7],

so we can do these integrals numerically.
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2. The conservation laws on the spheres with four punctures

As outlined in the previous section, after we let the antighost insertion BB? act on the

states, we must compute correlators of the modified states (by which we mean the external

states modified by the antighost insertions). We could do that by performing their confor-

mal transformations from the local coordinates to the sphere. But when the level increases

it quickly becomes very tedious to calculate the conformal transformations of the fields

given in terms of oscillators acting on the vacuum. We thus need an alternative method for

computing correlators; a very convenient one is the method of conservation laws [15]. It was

originally constructed to calculate cubic interactions in Witten’s cubic string field theory,

but it can be generalized to quartic interactions with only notational complications. We

review the main idea of this method by considering, as an example, the conservation laws

for the ghost c(z). We take a quadratic differential φ(z), so that the product φ(z)c(z)dz

transforms as a 1-form. And we consider a small contour C on the sphere, which doesn’t

encircle any of the punctures 0, 1, ξ and ∞. If φ(z) is regular everywhere, except possibly

at the punctures, the contour can be continuously deformed into the sum of four contours

CI around each punctures. Expressing each integral in the local coordinates wI , we thus

have

0 = 〈Σ|

4
∑

I=1

∮

CI

φ(I)(wI)c
(I)(wI)dwI . (2.1)

We have c(I)(wI) =
∑

n
c
(I)
n

wn−1
I

, therefore if φ(I)(wI) has a pole of order n, the CI contour

integral will pick up an oscillator c2−n and oscillators with higher indices. We can now

explain the method: if we want to get rid of an oscillator c
(I)
−n at the puncture I, we choose

a φ(z) with a pole of order 2 + n at the puncture I and poles of lesser order at the other

punctures. We can then trade c
(I)
−n for oscillators c

(J)
m with J = 1, . . . , 4 and m > −n.

Repeating this process, we will eventually be left with only c1’s.

The conservation laws for the Virasoro oscillators are done much in the same way,

except for the fact that T (z) is not a tensor if the central charge is not zero. Under a

conformal change of variable, it transforms as

T̃ (w) =

(

dz

dw

)2

T (z) +
c

12
S(z,w) , (2.2)

where

S(z,w) =
z′′′

z′
−

3

2

(

z′′

z′

)2

(2.3)

is the Schwartzian derivative (derivatives are with respect to w), and c is the central charge.

Now if v(z) transforms like a vector field, we see that the product v(z)T (z)dz transforms

as

v(z)T (z)dz = ṽ(w)
(

T̃ (w) −
c

12
S(z,w)

)

dw . (2.4)

Repeating the above idea of deforming a small contour, we find the Virasoro conservation

laws

〈Σ|

4
∑

I=1

∮

CI

v(I)(wI)
(

T (I)(wI) −
c

12
S(z,wI)

)

dwI = 0 . (2.5)
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Since b(z) has conformal weight two, it transforms as a stress-tensor with zero central

charge, we can thus immediately deduce its conservation laws from (2.5).

〈Σ|

4
∑

I=1

∮

CI

v(I)(wI)b
(I)(wI)dwI = 0 . (2.6)

2.1 The first conservation laws for T (z)

We compute here the first few conservation laws. The higher ones would be too cumbersome

to write down, but it will become clear that, like the cubic ones, they can be easily generated

on a computer. We start by the conservation laws for T (z), which are slightly easier than

c(z) despite the presence of the central charge. Before we begin we must remark that in

the case of the cubic vertex, due to its cyclicity, one need only write the conservation laws

for one puncture ([15]). For example the conservation law to remove L
(1)
−n and the one to

remove L
(2)
−n are trivially related by cycling the punctures I → I + 1 (mod 3). For the

quartic vertex there is no cyclic symmetry, and we have to write the conservation laws for

each of the four punctures.

Since we are considering only descendants of scalar fields with zero momentum, which

are annihilated by L−1, we don’t need the conservation laws for L−1. Should a L−1 appear

from another conservation law, we can always commute it away. The first conservation

laws are thus the ones for L−2, which we construct now.

We start by expanding the Schwartzian derivative (2.3) in the local coordinates wI

with the definitions (1.5) and (1.6).

S(z,wI) = 6ρ2
I

(

γI − β2
I

)

+ ρ3
I

(

24δI − 48βIγI + 24β3
I

)

wI + O(w2
I ) . (2.7)

The Schwartzian derivatives are regular, so they matter only where we have a pole. From

the mode expansion

T (I)(wI) =
∑ L

(I)
n

wI
n+2

, (2.8)

we see that we need a vector field v(z) with a pole of order one at the puncture I, and

regular everywhere else. In general we will denote vn,I(z) a vector field with expansion in

the local coordinates wI

vn,I(wI) = w−n+1
I + O(w0

I ) , (2.9)

and regular everywhere else. It can therefore be used to trade a L
(I)
−n for oscillators L

(J)
m ,

J = 1, . . . , 4, m ≥ −1. It is easily seen recursively, that we can find such vectors for any

n ≥ 2. Indeed if we have vm,I(z) for m < n and if we write the expansion of the vector

field u(z) = (z − zI)
−n+1 in the local coordinates wI as:

u(wI) =
−1
∑

m=−n+1

amwm
I + O(w0

I ) , (2.10)

we can take

vn,I(z) =
1

a−n+1

(

z−n+1 −

−1
∑

m=−n+2

amv1−m,I(z)

)

. (2.11)
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It will be useful to make the following definitions

zIJ ≡ zI − zJ , sI ≡
1

zIJ
+

1

zIK
, qI ≡

1

zIJzIK
, (2.12)

where the set formed by I, J and K must be {1, 2, 3} (regardless of order). We are now

ready to calculate the conservation laws. For L
(I)
−2 at the finite punctures I = 1, 2, 3, we

can take

v2,I(z) =
ρ2

I

zIJzIK

(z − zJ)(z − zK)

z − zI
. (2.13)

Recalling that the local coordinates wI are related to the uniformizer z (or t = 1/z for the

puncture at infinity) through the conformal maps hI , given by (1.5) and (1.6) and explicitly

rewritten as

z = hI(wI) = zI + ρIwI + ρ2
IβIw

2
I + ρ3

IγIw
3
I + ρ4

IδIw
4
I + · · · , I = 1, 2, 3

t = h4(w4) = ρ4w4 + ρ2
4β4w

2
4 + ρ3

4γ4w
3
4 + ρ4

4δ4w
4
4 + · · · , (2.14)

and using the transformation law of a vector field

ṽ(w) = v(z)
dw

dz
, (2.15)

we find the following expansions in the local coordinates wI

v
(I)
2,I (wI) =

1

wI
+ ρI (sI − 3βI) + ρ2

I

(

−2βIsI + qI + 7β2
I − 4γI

)

wI + · · ·

v
(J)
2,I (wJ ) = ρ2

I

zJK

z2
IJzKI

wJ + · · · , J ≤ 3 , J 6= I

v
(4)
2,I (w4) = −

ρ2
I

zIJzIK
w4 + · · · . (2.16)

For the puncture at infinity we take

v2,4(t) = ξ
(t − 1)

(

t − 1
ξ

)

t
ρ2
4 , (2.17)

which has the expansions

v
(4)
2,4(w4) =

1

w4
− ρ4(1 + ξ + 3β4) + ρ2

4

(

ξ + 2β4(1 + ξ) + 7β2
4 − 4γ4

)

w4 + · · ·

v
(I)
2,4(wI) = −ρ2

4zIJzIK wI + · · · , I ≤ 3 . (2.18)

Now using (2.7), (2.16) and (2.18) in (2.5) we find the conservation laws for L−2

0 = 〈Σ|
(

L−2+
c

2
ρ2

I(β
2
I −γI)+ρI (sI−3βI)L−1+ρ2

I

(

−2βIsI +qI +7β2
I −4γI

)

L0 + · · ·
)(I)

+

3
∑

J=1
J 6=I

〈Σ|

(

ρ2
I

zJK

z2
IJzKI

L0 + · · ·

)(J)

+ 〈Σ|

(

−
ρ2

I

zIJzIK
L0 + · · ·

)(4)

, I = 1, 2, 3

– 7 –
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0 = 〈Σ|

×
(

L−2+
c

2
ρ2
4(β

2
4−γ4)−ρ4(1+ξ+3β4)L−1+ρ2

4

(

ξ+2β4(1 + ξ)+7β2
4−4γ4

)

L0+ · · ·
)(4)

+

3
∑

I=1

〈Σ|
(

−ρ2
4zIJzIK L0 + · · ·

)(I)
, (2.19)

where the dots indicate oscillators with indices greater than zero.

Now we go one step further and write the conservations laws for L−3. We are again

expanding them up to L0, so, together with the laws for L−2, they can be used to compute

the matter part of all quartic correlators with one field of level six and three other fields

of level up to four. We take

v3,I(z) =
ρ3

I

zIJzIK

(z − zJ)(z − zK)

(z − zI)2
− ρI(sI − 4βI) v2,I(z)

v3,4(t) = ρ3
4ξ

(t − 1)
(

t − 1
ξ

)

t2
+ ρ4(1 + ξ + 4β4) v2,4(t) , (2.20)

from which we find the conservation laws

0 = 〈Σ|
(

L−3 − c ρ3
I

(

2δI − 4βIγI + 2β3
I

)

+ ρ2
I

(

−β2
I − 5γI + 4βIsI − s2

I + qI

)

L−1

+ρ3
I

(

2β3
I + 12βIγI − 6δI − 8β2

I sI + 2βIqI + 2βIs
2
I − sIqI

)

L0 + · · ·
)(I)

+

3
∑

J=1
J 6=I

〈Σ|

(

ρ3
IzJK

Z2
IJzIK

(

1

zIJ
+ sI−4βI

)

L0+. . .

)(J)

+〈Σ|

(

ρ3
I

zIJzIK
(sI − 4βI)L0+. . .

)(4)

0 = 〈Σ|
(

L−3 − c ρ3
4

(

2δ4 − 4β4γ4 + 2β3
4

)

− ρ2
4

(

β2
4 + 4(1 + ξ)β4 + 5γ4 + 1 + ξ + ξ2

)

L−1

+ρ3
4

(

2β3
4 + 8(1 + ξ)β2

4 + 2(1 + 3ξ + ξ2)β4 + 12β4γ4 − 6δ4 + ξ + ξ2
)

L0 + · · ·
)(4)

+
3

∑

I=1

〈Σ|
(

−ρ3
4

(

z2
I (1 − ξ)(−1)I + zIJzIK(1 + ξ + 4β4)

)

L0 + · · ·
)(I)

. (2.21)

We emphasize again that the conservation laws for b−n are the same as for L−n after

setting the central charge c to zero.

2.2 The first conservation laws for c(z)

If the string states are in the Siegel gauge, they will carry no c0 oscillators, so we don’t

need the conservation laws for c0. One may worry that a c
(I)
0 may arise from a term w−2

I

in another conservation law, but we can avoid this because we can always remove such a

term by subtracting multiples of the quadratic differentials given by

φ0,I(z) =
zIJzIK

(z − zI)2(z − zJ)(z − zK)
, I = 1, 2, 3

φ0,4(t) =
ξ−1

t2(t − 1)(t − ξ−1)
. (2.22)

We see that φ0,I(z) has a pole of order 2 with unit coefficient at the puncture zI , and poles

of order one at two other punctures. For I < 4, φ0,I(z) is finite at infinity. We denote by
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φn,I(z) a quadratic differential with expansion in the local coordinates wI

φn,I(wI) = w−n−2
I + O(w−1

I ) , (2.23)

and regular everywhere expect for possible poles of order one at other punctures. It can

therefore be used to trade a c
(I)
−n for oscillators c

(J)
m , J = 1 . . . , 4, m ≥ 1. Again, it is easy

to see that we can find such quadratic differentials for any n ≥ 1.

We can now write the conservation laws for c−1. For the finite punctures I = 1, 2, 3,

we can take

φ1,I(z) =

(

ρI

z − zI
− ρI(βI − sI)

)

φ0,I(z) . (2.24)

Using the transformation law of a quadratic differential φ(z)

φ̃(w)dw2 = φ(z)dz2 , (2.25)

and the conformal maps (2.14), we can write the expansions of φ1,I(z) in the local coordi-

nates

φ
(I)
1,I(wI) =

1

w3
I

+ ρ2
I

(

−4β2
I + βIsI + 3γI − qI

) 1

wI
+ · · ·

φ
(J)
1,I (wJ ) = −

ρIρJzIK

zIJzJK

(

1

zIJ
+ βI − sI

)

1

wJ
+ · · ·

φ
(4)
1,I(w4) = O(w0

4) . (2.26)

For the puncture at infinity we take

φ1,4(t) =
ρ4

t3
− β4ρ4φ0,4(t) , (2.27)

which has the expansions

φ
(4)
1,4(w4) =

1

w3
4

+ ρ2
4

(

3γ4 − 4β2
4 − (1 + ξ)β4

) 1

w4
+ · · ·

φ
(I)
1,4(wI) = ρ4ρI

(

δI1 − (−1)I(1 − δI1)
β4

1 − ξ

)

1

wI
+ · · · . (2.28)

From these expansions we deduce the conservation laws for c−1

0 = 〈Σ|
(

c−1 + ρ2
I

(

−4β2
I + βIsI + 3γI − qI

)

c1 + · · ·
)(I)

+
3

∑

J=1
J 6=I

〈Σ|

(

−
ρIρJzIK

zIJzJK

(

1

zIJ
+ βI − sI

)

c1 + · · ·

)(J)

+ 〈Σ| (. . .)(4)

0 = 〈Σ|
(

c−1 + ρ2
4

(

3γ4 − 4β2
4 − (1 + ξ)β4

)

c1 + · · ·
)(4)

+
3

∑

I=1

〈Σ|

(

ρ4ρI

(

δI1 − (−1)I(1 − δI1)
β4

1 − ξ

)

c1 + · · ·

)(I)

. (2.29)

We now write the next conservation laws, for c−2. For the vector fields, we take

φ2,I(z) =
ρ2

I

(z − zI)4
+ 2ρ2

I(β
2
I − γI)φ0,I(z)
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φ2,4(t) =
ρ2
4

t4
+ 2ρ2

4(β
2
4 − γ4)φ0,4(t) . (2.30)

And we find

0 = 〈Σ|
(

c−2 + 2ρ3
I

(

4β3
I − 6βIγI + 2δI + (γI − β2

I )sI

)

c1 + · · ·
)(I)

+
3

∑

J=1
J 6=I

〈Σ|

(

2ρ2
IρJ(β2

I − γI)
zIK

zIJzJK
c1 + · · ·

)(J)

+ 〈Σ| (. . .)(4)

0 = 〈Σ|
(

c−2 + 2ρ3
4

(

4β3
4 − 6β4γ4 + 2δ4 − (1 + ξ)(γ4 − β2

4)
)

c1 + · · ·
)(4)

+
3

∑

I=1

〈Σ|

(

2(−1)Iρ2
4ρI(1 − δI1)

β2
4 − γ4

1 − ξ
c1 + · · ·

)(I)

. (2.31)

2.3 An example

We want here to give a simple but nontrivial example of a quartic correlator computation

that uses some of the above conservation laws. Let us take one field of level four and one

field of level six (see section 3 for the list of fields and their notation). We choose

|Ψ4〉 = c−1c̄−1|0〉

|Ψ12〉 = c−2c̄−2|0〉 . (2.32)

And we want to calculate the quartic amplitude of Ψ4, Ψ12, and two tachyons.

{T,Ψ4,Ψ12, T} =
1

π

∫

V0,4

dx ∧ dy〈Σ|BB?|T 〉|Ψ4〉|Ψ12〉|T 〉 . (2.33)

where the antighost insertions are given by (1.3) and (1.4). We find

〈Σ|BB?|T 〉|Ψ4〉|Ψ12〉|T 〉 = −2
(

B2
1B̄2

1 − C2
1 C̄2

1

)

〈c1, 1, c−2, c1〉o〈c̄1, 1, c̄−2, c̄1〉o

−2
(

B3
2B̄3

2 − C3
2 C̄3

2

)

〈c1, c−1, 1, c1〉o〈c̄1, c̄−1, 1, c̄1〉o

+2
(

B2
1B̄3

2 − C2
1 C̄3

2

)

〈c1, 1, c−2, c1〉o〈c̄1, c̄−1, 1, c̄1〉o

+2
(

B3
2B̄2

1 − C3
2 C̄2

1

)

〈c1, c−1, 1, c1〉o〈c̄1, 1, c̄−2, c̄1〉o . (2.34)

We therefore need to compute the two open correlators 〈c1, c−1, 1, c1〉o and 〈c1, 1, c−2, c1〉o,

on the four-punctured sphere Σ. To calculate the first one, we use the conservation laws

(2.29) to exchange the c−1 on the second puncture for a c1 on the second puncture and a

c1 on the third puncture. Namely

〈c1, c−1, 1, c1〉o = −ρ2
2

(

−4β2
2 + β2s2 + 3γ2 − q2

)

〈c1, c1, 1, c1〉o

+ρ2ρ3
1

ξ(1 − ξ)

(

1

1 − ξ
+ β2 − s2

)

〈c1, 1, c1, c1〉o

=
ρ2

ρ1ρ4

(

4β2
2 − β2 − 3γ2

)

. (2.35)
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Similarly, we use the conservation laws for c−2 (2.31) to compute the second correlator by

exchanging the c−2 on the third puncture for a c1 on the third puncture and a c1 on the

second puncture. We find

〈c1, 1, c−2, c1〉o = −2ρ3
3

(

4β3
3 − 6β3γ3 + 2δ3 + (γ3 − β2

3)s3

)

〈c1, 1, c1, c1〉o

−2ρ2
3ρ2

(

β2
3 − γ3

) ξ

ξ − 1
〈c1, c1, 1, c1〉o

= −2
ρ2
3

ρ1ρ4

(

ξ
(

4β2
3 − 6β3γ3 + 2δ3

)

+ γ3 − β2
3

)

. (2.36)

The integral in (2.33) can then by expressed as an integral on the region A (see (1.9)) as

explained in [9], and the numerical integration on A can be done by using the fits given

in [7].

3. The results

The string field

We start this section by writing the components of the string field. We recall the string

field up to level four, and compare our notation with the one in [5]. Then we list all the

fields at level six. For level eight and ten, we describe a simple way to write down all the

closed fields from open fields of all ghost numbers.

We will write the string field in terms of components ψi depending on one index.

|Ψ〉 =
∑

i≥1

ψi|Ψi〉 . (3.1)

The first field |Ψ1〉 is the only field of level zero, namely the tachyon

|Ψ1〉 = c1c̄1|0〉 . (3.2)

Then |Ψ2〉 is the field of level two, the dilaton

|Ψ2〉 = (c1c−1 − c̄1c̄−1) |0〉 . (3.3)

Before going further, it is good to introduce a way of listing the closed fields in a relatively

simple manner. The elementary closed fields |Ψk〉 can be written

|Ψk〉 =
(

Ok1O
?
k2

−O?
k1
Ok2

)

|0〉 , (3.4)

where Ok1,2 are products of left-moving oscillators. The ? conjugation was defined in [5] on

closed fields, here it simply changes all left-moving oscillators to right-moving oscillators

without changing their order. Note that the expression (3.4) is invariant under world-sheet

parity P, whose action is

PΨ = −Ψ? . (3.5)

Indeed, it was shown in [5] that we may consistently restrict the string field to have P-

eigenvalue one. Let us look at the open string states Ok1 |0〉 and Ok2 |0〉. Because the closed
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L G open string states |L,G, i〉, i = 1, . . . , nL,G nL,G

0 1 c1|0〉 1

1 0 |0〉 1

2 c−1c1|0〉 1

2 0 b−2c1|0〉 1

1 c−1|0〉, L−2c1|0〉 2

2 c−2c1|0〉 1

3 −1 b−2|0〉 1

0 L−2|0〉, b−3c1|0〉 2

1 c−2|0〉, L−3c1|0〉, b−2c−1c1|0〉 3

2 c−3c1|0〉, L−2c−1c1|0〉 2

3 c−2c−1c1|0〉 1

Table 1: The open string fields of level L and ghost number G for levels 0 to 3.

string state must satisfy
(

L0 − L̄0

)

|Ψk〉 = 0, these two open string states must have the

same level L. Moreover, their ghost numbers must add to two. If we write an open string

state of level L and ghost number G as |L,G, i〉, where i is an index running from one to

the number nL,G of such open states, we can write

|Ψk〉 = |Lk, Gk, ik〉 ⊗ |Lk, 2 − Gk, jk〉
? − |Lk, Gk, ik〉

? ⊗ |Lk, 2 − Gk, jk〉 . (3.6)

The definition of the ?-conjugation has been trivially extended here, its action on a left-

moving open string state is a right-moving open-string state. We list the open string states

|L,G, i〉 in table 1 for L = 0, 1, 2, 3 and in table 3 for L = 4, 5.

Given these tables, it is now straightforward to write down all closed fields at level L.

As a preliminary we see from the construction (3.6) and from the fact that nL,G = nL,2−G,

that the number NL of closed string states at level L is

NL =
∞
∑

G=2

n2
L/2,G +

1

2
nL/2,1

(

nL/2,1 + 1
)

. (3.7)

We list in table 2, the numbers NL for L up to 24. In this paper we shall limit ourselves

to level 10, the computational limit of our codes.

We can now continue to list the closed states. At level four, we read from table 1

|Ψ3〉 =
(

b−2c1c̄−2c̄1 − b̄−2c̄1c−2c1

)

|0〉

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
9

L 0 2 4 6 8 10 12 14 16 18 20 22 24

NL 1 1 4 11 38 103 314 807 2148 5282 12872 29792 68526

Table 2: The numbers of closed string states NL at level L.

|Ψ4〉 = c−1c̄−1|0〉

|Ψ5〉 = L−2c1L̄−2c̄1|0〉

|Ψ6〉 =
(

c−1L̄−2c̄1 − c̄−1L−2c1

)

|0〉 .

So our fields ψi up to level 4 are related to the fields of [5] by

ψ1 = t , ψ2 = d , ψ3 = g1 , ψ4 = f1 , ψ5 = f2 , ψ6 = f3 . (3.8)

In order to facilitate comparisons, we will keep the names t, d, g1, f1, f2 and f3 for these

fields. At level six, we have

|Ψ7〉 =
(

b−2c̄−2c̄−1c̄1 − b̄−2c−2c−1c1

)

|0〉

|Ψ8〉 =
(

L−2c̄−3c̄1 − L̄−2c−3c1

)

|0〉

|Ψ9〉 = L−2L̄−2 (c̄−1c̄1 − c−1c1) |0〉

|Ψ10〉 =
(

b−3c1c̄−3c̄1 − b̄−3c̄1c−3c1

)

|0〉

|Ψ11〉 =
(

b−3c1L̄−2c̄−1c̄1 − b̄−3c̄1L−2c−1c1

)

|0〉

|Ψ12〉 = c−2c̄−2|0〉

|Ψ13〉 = L−3c1L̄−3c̄1|0〉

|Ψ14〉 = b−2c−1c1b̄−2c̄−1c̄1|0〉

|Ψ15〉 =
(

c−2L̄−3c̄1 − c̄−2L−3c1

)

|0〉

|Ψ16〉 =
(

c−2b̄−2c̄−1c̄1 − c̄−2b−2c−1c1

)

|0〉

|Ψ17〉 =
(

L−3c1b̄−2c̄−1c̄1 − L̄−3c̄1b−2c−1c1

)

|0〉 .

For levels 8 and 10, we don’t explicitly write the 38 + 103 fields, but we refer to table 3,

and we specify in which order we do the constructions (3.6). First we do G = −∞, . . . , 0,

i = 1, . . . , nL/2,G, j = 1, . . . , nL/2,G. Then G = 1, i = j = 1, . . . , nL/2,G. And finally G = 1,

i = 1, . . . , nL/2,G, j = i + 1, . . . , nL/2,G.

The vacuum

We will consider two different truncation schemes A and B. In the scheme A (which was

used in [5]), we keep all the fields up to some fixed level L (which in this paper will be

L = 10), and we progressively increase the interaction level M of the quartic potential,

M = 0, 2, , . . . , 10. In the scheme B we progressively increase the maximal fields level L

(here L = 2 to L = 10 and we do not consider fields of level higher than L), and for each L

we take the full quartic potential, i.e. the one with interaction level M = 4L (this is similar

to what is usually done in cubic string field theory).
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L G open string states |L, G, i〉, i = 1, . . . , nL,G nL,G

4 −1 b
−3|0〉 1

0 L
−3|0〉, L

−2b−2c1|0〉, b
−4c1|0〉, b

−2c−1|0〉 4

1 L
−4c1|0〉, L

−2c−1|0〉, L
−2L−2c1|0〉, c

−3|0〉, b
−3c−1c1|0〉, b

−2c−2c1|0〉 6

2 L
−2c−2c1|0〉, L

−3c−1c1|0〉, c
−4c1|0〉, c

−2c−1|0〉 4

3 c
−3c−1c1|0〉 1

5 −1 b
−4|0〉, L

−2b−2|0〉, b
−3b−2c1|0〉 3

0 L
−4|0〉, L

−3b−2c1|0〉, L
−2L−2|0〉, L

−2b−3c1|0〉, b
−5c1|0〉, b

−3c−1|0〉, b
−2c−2|0〉 7

1 L
−5c1|0〉, L

−3c−1|0〉, L
−3L−2c1|0〉, L

−2c−2|0〉, L
−2b−2c−1c1|0〉, c

−4|0〉, 9

b
−4c−1c1|0〉, b

−3c−2c1|0〉, b
−2c−3c1|0〉

2 L
−4c−1c1|0〉, L

−3c−2c1|0〉, L
−2c−3c1|0〉, L

−2L−2c−1c1|0〉, c
−5c1|0〉, 7

c
−3c−1|0〉, b

−2c−2c−1c1|0〉

3 L
−2c−2c−1c1|0〉, c

−4c−1c1|0〉, c
−3c−2c1|0〉 3

Table 3: The open string fields of level L and ghost number G for levels 4 and 5.

We start by giving the relevant quartic potentials that we computed. The quadratic

and cubic potentials with fields up to level six are written down in appendix A. For the

truncation scheme B, we need to extend the notations of [5]. We define V
(4)
L,M to be the

quartic potential at level M only, with fields of level up to L. We note that if L > M , we

have V
(4)
L,M = V

(4)
M,M . We then define the total potential to level M with fields to level L

V
(4)
L,M ≡ V

(3)
L,3L +

M/2
∑

i=0

V
(4)
L,2i , (3.9)

where V
(3)
L,3L is the complete quadratic and cubic potential with fields up to level L. We note

that, at the highest level that we are considering, L = 10, we take V
(3)
10,24 instead of V

(3)
10,30.

Indeed this last potential is too big for our symbolic calculator, but we emphasize that
the difference in the results is minute, as can be verified by comparing the results using,

for example, V
(3)
8,20 and V

(3)
8,24. Scheme B would require that we compute all potentials up

to V
(4)
10,40, but this computation would be impossible within a reasonable time with our

codes on a desktop computer. We are able to compute V
(4)
0,0 , V

(4)
2,2 , V

(4)
4,4 , V

(4)
6,6 , V

(4)
8,8 , V

(4)
10,10,

V
(4)
10,12, V

(4)
6,14, V

(4)
6,16. We will see below that these potentials are already enough to give a

good picture of scheme B. Of course if L′ < L, the potential V
(4)
L′,M can be obtained from

V
(4)
L,M simply by deleting the terms with fields of level greater than L′. The quadratic and

cubic potentials with fields up to level six are shown in appendix A. Here are some of the
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Potential t d f1 f2 f3 g1 Value of the potential

V
(3)
10,24 0.4392 0 −0.06836 −0.009648 −0.02748 0 −0.06394

V
(4)
10,0 −− −− −− −− −− −− −−

V
(4)
10,2 0.3182 0.4955 −0.08272 −0.006138 −0.02679 −0.1039 −0.05429

V
(4)
10,4 0.2311 0.4638 −0.04815 −0.001680 −0.01338 −0.07412 −0.03207

V
(4)
10,6 0.4016 0.4261 −0.1457 −0.008684 −0.04016 −0.03602 −0.06860

V
(4)
10,8 0.3194 0.4268 −0.1322 −0.01145 −0.04284 −0.1051 −0.05368

V
(4)
10,10 0.2901 0.4587 −0.1046 −0.007365 −0.03376 −0.1095 −0.04933

Table 4: The value of the potential and the expectation values of the first few fields at the

nonperturbative vacuum in the truncation scheme A.

aforementioned quartic potentials

κ2V
(4)
0,0 = −3.017 t4

κ2V
(4)
2,2 = 3.872 t3d

κ2V
(4)
4,4 = 1.368 d2t2 − 0.4377 f1t

3 − 56.26 f2t
3 + 13.02 f3t

3 + 0.2725 g1t
3

κ2V
(4)
6,6 = −0.9528 td3 + t2d (5.049 g1 + 2.385 f1 + 49.09 f2 − 20.14 f3)

+t3 (1.678 ψ8 + 16.36 ψ9 + 0.5357 ψ10 + 5.034 ψ11 − 0.1790 ψ12

−91.70 ψ13 − 0.7159 ψ14 + 8.255 ψ15 + 0.7159 ψ16 − 16.51 ψ17)

κ2V
(4)
8,8 = −0.1056 d4 + td2 (−3.226 g1 + 0.2779 f1 + 19.31 f2 − 5.047 f3)

+t2d (1.043 ψ7 − 2.393 ψ8 + 19.31 ψ9 + 1.325 ψ10 − 7.180 ψ11 + 0.3375 ψ12

+98.84 ψ13 + 1.350 ψ14 − 12.69 ψ15 − 2.393 ψ16 + 25.38 ψ17)

+t2
(

3.816 g2
1 + 0.6519 g1f1 + 3.429 g1f2 + 1.025 g1f3 + 0.2566 f2

1

−10.98 f1f2 − 1.906 f1f3 − 979.3 f2
2 + 314.4 f2f3 − 10.59 f2

3

)

+t3 (−1.872 ψ19 + 32.94 ψ20 + 0.7143 ψ21 + 1.711 ψ22 + 1.143 ψ23 − 3.750 ψ24

+0.09003 ψ25 − 0.3521 ψ26 + 0.1803 ψ27 + 2.854 ψ28 + 0.1263 ψ29 + 0.09024 ψ30

−0.3518 ψ31 + 422.0 ψ32 + 0.0452 ψ33 + 0.2043 ψ34 − 212.9 ψ35 − 3.660 ψ36

−831.3 ψ37 − 0.04596 ψ38 − 0.4136 ψ39 − 0.1758 ψ40 + 39.28 ψ41 − 658.1 ψ42

+7.068 ψ43 − 21.20 ψ44 − 9.795 ψ45 + 123.6 ψ46 − 0.3480 ψ47 + 1.044 ψ48

+0.01764 ψ49 + 10.34 ψ50 − 31.01 ψ51 − 5.997 ψ52 + 0.2757 ψ53 + 0.1697 ψ54

−0.5091 ψ55) . (3.10)

The numerical coefficients are rounded to four significant digits, corresponding to the

precision that the fit of the quartic geometry [7] allows to reach.

Scheme A

In table 4 we show our results for the nonperturbative minimum of the potential in the

truncation scheme A. We also give the vacuum expectation values of the tachyon, dilaton

and fields of level four. The lines up to interaction level four are very similar to the results
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of [5], the small differences coming from the quadratic and cubic interactions with fields

of level higher than four; these are clearly unimportant contributions and the results agree

qualitatively. Looking at the value of the potential, we see that although, up to level four,

it seemed to approach monotonically zero, it is actually oscillating around a value of about

−0.05. This oscillation, which is also visible on the expectation values of the fields, is quite

strong and makes it difficult to draw an accurate conclusion from this data.

Scheme B

Here we want to look at the minimum of V
(4)
L,4L for L = 2, . . . , 10. As we have already said,

we can’t fully compute these potentials for L > 4. To remedy this, we are going to look

at the values of the potential at the minimum of V
(4)
L,M for fixed L and all M starting at

two and up as far as we can. This data is shown in the columns of table 5. Looking at the

M L = 2 L = 4 L = 6 L = 8 L = 10

2 −0.1002 −0.05806 −0.05822 −0.05422 −0.05429

4 −0.05071 −0.03383 −0.03402 −0.03199 −0.03207

6 −0.08141 −0.07194 −0.07204 −0.06850 −0.06860

8 −0.08534 −0.05834 −0.05674 −0.05367 −0.05368

10 −− −0.05178 −0.05181 −0.04928 −0.04933

12 −− −0.05509 −0.05516 −0.05210 −0.05193

14 −− −0.05437 −0.05427 −− −−

16 −− −0.05442 −0.05438 −− −−

4L −0.0853 −0.0544 −0.0544 −0.0514 −0.0513

Table 5: The values of the potentials κ
2
VL,M at the vacuum, and the extrapolation of the value of κ

2
VL,4L.

longest complete data that we have, namely L = 4, we see that the value of the potential

at the vacuum oscillates (except from M = 6 to M = 10 where it always increases when

L ≥ 4) and converges relatively fast. We are thus making the assumption that the final

result is always between the last two available values and closer to the last one, namely

κ2
V

(4)
L,4L ≈ α κ2

V
(4)
L,Q + (1 − α)κ2

V
(4)
L,Q+2 , (3.11)

with 0 < α < 0.5. And we are making the further assumption that α doesn’t depend

much on Q and L. Once α is estimated, we should use the larger Q possible in order

to have an accurate extrapolation. The value of α that would give the right answer for

L = 4 (with Q = 10) is approximately α = 0.2. But if we assume that κ2
V

(4)
6,24 should be

between κ2
V

(4)
6,14 and κ2

V
(4)
6,16, we should rather take α ≈ 0.25. So we take α = 0.25. The

– 16 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
9

extrapolation for L = 6 with Q = 14 is then κ2
V

(4)
6,24 ≈ −0.0544. For L = 8 and L = 10 we

take Q = 10 and we find κ2
V

(4)
8,32 ≈ −0.0514 and κ2

V
(4)
10,40 ≈ −0.0513. As a check that α

doesn’t depend much on Q, taking Q = 10 for L = 4 would give κ2
V

(4)
4,16 ≈ −0.05426, not

terribly bad. We list the values of κ2
V

(4)
L,4L with three significant digits, in the last line of

table 5.

Now we would like to make a final extrapolation to estimate κ2
V

(4)
L,4L as L → ∞. Fits of

the form

κ2
V

(4)
L,4L = f0 +

f1

Lγ
(3.12)

are in general working quite well in open as well as closed string field theory. The exponent

γ, usually an integer or half-integer, must be guessed in some way, more or less heuristically.

Since our values for L = 4, 6 and L = 8, 10 are very similar, we feed the fit with only the

values at L = 2, 6, 10. Leaving γ free, we find that these three values are perfectly fitted

with γ = 1.76, and we take this as indication that we should take γ = 2. With this last fit

we find, with two significant digits

lim
L→∞

κ2
V

(4)
L,4L ≈ −0.050 . (3.13)

Although it is harder to make an extrapolation from the data of the scheme A (table 4),

the value (3.13) fits well with it, in particular it is between the last two values.

We can do similar extrapolations of the vacuum expectation values of the tachyon and

dilaton. For the tachyon we obtain an oscillation pattern very similar to the one of the

potential value, and we find

t ≈ 0.29 . (3.14)

The values for the dilaton, however, do not follow the same oscillating pattern and we are

not able to evaluate a reliable extrapolation for L > 4. At L = 2 and L = 4 we find

d = 0.439 and d = 0.435 respectively. Our best estimation based on those two values is

thus

d ≈ 0.43 . (3.15)

These values are again compatible with the data from scheme A.

4. Conclusions and prospects

In this paper we have considered nonpolynomial closed string field theory truncated at

polynomial order four. We have then truncated the string field to level ten and have

studied the nonperturbative minimum of the potential. In [5], an investigation of the low-

energy effective action of the tachyon, dilaton and graviton of closed bosonic string theory

led to the suggestion that if CSFT has a nonperturbative minimum, its action density

should vanish. The results of the present paper do not support this supposition at quartic

order. Instead, we find that the quartic potential has a minimum with height −0.050.
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Potential t d f1 f2 f3 g1 Value of the potential

V
(4,t5)
10,0 0.3321 0 −0.03949 −0.005976 −0.01620 0 −0.05094

V
(4,t5)
10,2 0.2612 0.2650 −0.03506 −0.003927 −0.01285 −0.04436 −0.03380

V
(4,t5)
10,4 0.2187 0.3460 −0.03135 −0.001509 −0.009119 −0.05061 −0.02630

V
(4,t5)
10,6 0.2666 0.2156 −0.04480 −0.003522 −0.01353 −0.01968 −0.03370

V
(4,t5)
10,8 0.2599 0.2359 −0.05041 −0.004857 −0.01657 −0.03693 −0.03276

V
(4,t5)
10,10 0.2570 0.2479 −0.04777 −0.004227 −0.01562 −0.03966 −0.03243

Table 6: The results of the truncation scheme A with the term t5 included.

The question that we can ask now, is how the result (3.13) changes as we include higher

order terms in the action (i.e. quintic term, sixtic term, etc. . . ). In a separate paper [13]

one of us has computed the five-tachyon contact term. Other quintic terms of higher level

will follow [14], but we want here to already see how the results change if we include the

t5 term in the potential. In our normalization we have [13]

κ2V
(5)
0,0 = 9.924 t5 .

Since the tachyon expectation value is positive at the vacuum, we expect this term to

increase the value of the potential at the minimum. We make the definition

V
(4,t5)
L,M ≡ V

(4)
L,M + V

(5)
0,0 ,

and repeat our analysis in the truncation scheme A. We find, as expected, that all values

of the potential are shallower. But we also note that the oscillations are less strong than in

table 4; that might be a sign that the results of level truncation will be improved when we

include the quintic term, and that this procedure of truncating the action order by order

is convergent. We emphasize however that quintic terms of higher level are necessary to

reach any conclusion.

The conclusion that we can make at this point, is that at quartic order, the vacuum has

a nonzero depth. It is possible that the higher orders contributions are important enough

to make this depth converge to zero. It is also possible that the vacuum has a nonzero

depth, close to what we find at quartic order. In this last case, it will be very interesting

to try to understand what is this vacuum. Hopefully, the upcoming calculation at quintic

order will make it possible to decide which one of the two alternatives is the right one.

Acknowledgments

We would like to thank Barton Zwiebach for helpful discussions and suggestions on the

manuscript. N.M. is supported by an ”EC” fellowship within the framework of the ”Marie

Curie Research Training Network” Programme, Contract no. MRTN-CT-2004-503369.

– 18 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
9

A. The quadratic and cubic potentials with fields of level up to six

In this appendix we want to write the potential V
(3)
L,3L with the fields level L = 6. It is

decomposed in terms of quadratic potentials V
(2)
M and cubic potentials V

(3)
M at level M .

V
(3)
6,18 = V

(2)
0 +V

(2)
8 +V

(2)
12 +V

(3)
0 +V

(3)
4 +V

(3)
6 +V

(3)
8 +V

(3)
10 +V

(3)
12 +V

(3)
14 +V

(3)
16 +V

(3)
18 . (A.1)

For the quadratic potentials we have

κ2V
(2)
0 = −t2 (A.2)

κ2V
(2)
8 = f2

1 + 169f2
2 − 26f2

3 − 2g2
1 (A.3)

κ2V
(2)
12 = 4ψ2

7 − 676ψ2
9 − 4ψ2

10 + 5408ψ2
13 + 4ψ2

16 − 104ψ8ψ11 + 4ψ12ψ14 + 416ψ15ψ17 .

(A.4)

And the cubic potentials are

κ
2
V

(3)
0 =

6561t3

4096
(A.5)

κ
2
V

(3)
4 = −

27td2

32
+

3267f1t2

4096
+

114075f2t2

4096
−

19305f3t2

2048
(A.6)

κ
2
V

(3)
6 = −

25

8
dg1t (A.7)

κ
2
V

(3)
8 = −

f1d2

96
−

4225f2d2

864
+

65f3d2

144
+

325

432
tψ8d −

4225

432
tψ9d −

25

144
tψ10d +

325

144
tψ11d +

361f2
1 t

12288

+
57047809f2

2 t

110592
+

470873f2
3 t

27648
−

49g2
1t

24
+

511225f1f2t

55296
−

13585f1f3t

9216
−

5400395f2f3t

27648
(A.8)

κ
2
V

(3)
10 = −

400

729
ψ7d

2
+

50

729
ψ12d

2
+

200

729
ψ14d

2
+

200

729
ψ16d

2
−

9025f1g1d

5832
−

105625f2g1d

5832
+

30875f3g1d

2916

+
6175g1tψ8

1944
−

105625g1tψ9

5832
−

361

216
g1tψ10 +

6175

648
g1tψ11 +

50

729
f1tψ12 +

346112

729
f2tψ13 +

200

729
f1tψ14

−
8320

729
f3tψ15 −

200

729
f1tψ16 +

16640

729
f3tψ17 (A.9)

κ
2
V

(3)
12 =

f3
1

4096
+

1525225f2f2
1

8957952
−

1235f3f2
1

55296
+

6902784889f2
2 f1

80621568
+

1884233f2
3 f1

2239488
−

961g2
1f1

157464
−

102607505f2f3f1

6718464

+
325dψ8f1

34992
−

4225dψ9f1

34992
−

25dψ10f1

11664
+

325dψ11f1

11664
+

74181603769f3
2

26873856
−

31167227f3
3

3359232

+
4965049817f2f2

3

20155392
−

207025f2g2
1

17496
+

14105f3g2
1

26244
+

128tψ2
7

19683
−

105625tψ2
8

629856
−

57047809tψ2
9

629856

−
1207801tψ2

10

629856
−

105625tψ2
11

69984
+

625tψ2
12

19683
+

44302336tψ2
13

19683
+

10000tψ2
14

19683
−

332800tψ2
15

19683
+

8528tψ2
16

19683

−
1331200tψ2

17

19683
−

22628735129f2
2 f3

13436928
−

33856dg1ψ7

19683
+

2454725df2ψ8

314928
−

9815df3ψ8

17496
−

57047809df2ψ9

314928

+
490945df3ψ9

52488
+

2454725tψ8ψ9

314928
−

105625df2ψ10

104976
+

1625df3ψ10

17496
+

357175tψ8ψ10

314928
−

105625tψ9ψ10

104976

+
2454725df2ψ11

104976
−

9815df3ψ11

5832
−

8300747tψ8ψ11

314928
+

2454725tψ9ψ11

104976
+

357175tψ10ψ11

104976
+

1400dg1ψ12

6561

+
5600dg1ψ14

6561
+

392tψ12ψ14

2187
+

17056dg1ψ16

19683
−

1400tψ12ψ16

6561
−

5600tψ14ψ16

6561
+

372736tψ15ψ17

6561
(A.10)

κ
2
V

(3)
14 = −

211250ψ12f2
3

531441
−

41879552ψ13f2
3

531441
−

845000ψ14f2
3

531441
+

5948800ψ15f2
3

531441
+

845000ψ16f2
3

531441

−
11897600ψ17f2

3

531441
−

27055015g1ψ8f3

2125764
+

233198875g1ψ9f3

2125764
+

1021345g1ψ10f3

236196
−

27055015g1ψ11f3

708588

−
78400g2

1ψ7

59049
+

5106725f1g1ψ8

4251528
+

46639775f2g1ψ8

1417176
+

426400dψ7ψ8

531441
−

38130625f1g1ψ9

4251528

−
1426195225f2g1ψ9

4251528
−

3380000dψ7ψ9

531441
−

683929f1g1ψ10

1417176
−

1525225f2g1ψ10

157464
−

53792dψ7ψ10

177147

+
5106725f1g1ψ11

1417176
+

46639775f2g1ψ11

472392
+

426400dψ7ψ11

177147
+

9800g2
1ψ12

59049
+

211250f1f2ψ12

531441

−
32500dψ8ψ12

531441
+

422500dψ9ψ12

531441
+

1900dψ10ψ12

59049
−

24700dψ11ψ12

59049
+

41879552f1f2ψ13

531441
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−
44302336dψ9ψ13

531441
+

39200g2
1ψ14

59049
+

845000f1f2ψ14

531441
−

98800dψ8ψ14

177147
+

1690000dψ9ψ14

531441

+
7600dψ10ψ14

59049
−

130000dψ11ψ14

177147
−

5948800f1f2ψ15

531441
−

332800dψ8ψ15

531441
+

252928dψ11ψ15

59049

+
39200g2

1ψ16

59049
−

845000f1f2ψ16

531441
−

213200dψ8ψ16

531441
+

1690000dψ9ψ16

531441
+

30992dψ10ψ16

177147

−
213200dψ11ψ16

177147
+

11897600f1f2ψ17

531441
−

505856dψ8ψ17

177147
+

665600dψ11ψ17

177147
(A.11)

κ
2
V

(3)
16 =

5274752f1ψ2
7

14348907
+

540800f2ψ2
7

14348907
−

3377920f3ψ2
7

14348907
+

6219200g1ψ8ψ7

4782969
−

143041600g1ψ9ψ7

14348907

−
270400g1ψ10ψ7

531441
+

6219200g1ψ11ψ7

1594323
−

105625f1ψ2
8

51018336
−

1426195225f2ψ2
8

459165024
+

12273625f3ψ2
8

76527504

−
57047809f1ψ2

9

51018336
−

74181603769f2 ψ2
9

51018336
+

2057157739f3ψ2
9

25509168
−

131997121f1ψ2
10

459165024
−

5102959225f2ψ2
10

459165024

+
820716715f3ψ2

10

229582512
−

105625f1ψ2
11

5668704
−

1426195225f2ψ2
11

51018336
+

12273625f3ψ2
11

8503056
+

625f1ψ2
12

19683

+
2640625f2ψ2

12

14348907
−

81250f3ψ2
12

531441
+

5360582656f1ψ2
13

14348907
+

15993143296f2ψ2
13

1594323
−

18518376448f3ψ2
13

4782969

+
10000f1ψ2

14

19683
+

42250000f2ψ2
14

14348907
−

1300000f3ψ2
14

531441
−

3660800f1ψ2
15

531441
−

411008000f2ψ2
15

4782969

+
750131200f3ψ2

15

14348907
+

3795152f1ψ2
16

14348907
+

36030800f2ψ2
16

14348907
−

4852640f3ψ2
16

4782969
−

14643200f1ψ2
17

531441

−
1644032000f2ψ2

17

4782969
+

3000524800f3ψ2
17

14348907
+

2454725f1ψ8ψ9

25509168
+

10285788695f2ψ8ψ9

76527504

−
275396485f3ψ8ψ9

38263752
+

3733925f1ψ8ψ10

76527504
+

2697742775f2ψ8ψ10

229582512
−

251765605f3ψ8ψ10

114791256

−
105625f1ψ9ψ10

8503056
−

1426195225f2ψ9ψ10

76527504
+

12273625f3ψ9ψ10

12754584
−

86776417f1ψ8ψ11

76527504

−
19456250905f2 ψ8ψ11

76527504
+

1834363531f3ψ8ψ11

38263752
+

2454725f1ψ9ψ11

8503056
+

10285788695f2ψ9ψ11

25509168

−
275396485f3ψ9ψ11

12754584
+

3733925f1ψ10ψ11

25509168
+

2697742775f2ψ10ψ11

76527504
−

251765605f3ψ10ψ11

38263752

−
455000g1ψ8ψ12

4782969
+

5915000g1ψ9ψ12

4782969
+

26600g1ψ10ψ12

531441
−

345800g1ψ11ψ12

531441
−

2215116800g1ψ9ψ13

14348907

−
1383200g1ψ8ψ14

1594323
+

23660000g1ψ9ψ14

4782969
+

106400g1ψ10ψ14

531441
−

1820000g1ψ11ψ14

1594323
+

150152f1ψ12ψ14

14348907

+
1656200f2ψ12ψ14

1594323
+

997360f3ψ12ψ14

4782969
+

4659200g1ψ8ψ15

4782969
+

34611200g1ψ9ψ15

14348907
−

12646400g1ψ11ψ15

1594323

−
3234400g1ψ8ψ16

4782969
+

72061600g1ψ9ψ16

14348907
+

164000g1ψ10ψ16

531441
−

3234400g1ψ11ψ16

1594323
+

27400f1ψ12ψ16

531441

−
5915000f2ψ12ψ16

4782969
+

5590000f3ψ12ψ16

14348907
+

109600f1ψ14ψ16

531441
−

23660000f2ψ14ψ16

4782969

+
22360000f3ψ14ψ16

14348907
+

25292800g1ψ8ψ17

4782969
−

69222400g1ψ9ψ17

14348907
−

9318400g1ψ11ψ17

1594323

−
80244736f1ψ15ψ17

14348907
+

460328960f2ψ15ψ17

1594323
−

127901696f3ψ15ψ17

4782969
(A.12)

κ
2
V

(3)
18 = −

99123200ψ12ψ2
7

387420489
−

396492800ψ14ψ2
7

387420489
−

396492800ψ16ψ2
7

387420489
−

57402800ψ2
8ψ7

129140163
−

22819123600ψ2
9 ψ7

387420489

−
144400ψ2

10ψ7

4782969
−

57402800ψ2
11ψ7

14348907
+

3220599200ψ8ψ9ψ7

387420489
+

8101600ψ8ψ10ψ7

43046721
−

227271200ψ9ψ10ψ7

129140163

−
227271200ψ8ψ11ψ7

129140163
+

3220599200ψ9ψ11ψ7

129140163
+

8101600ψ10ψ11ψ7

14348907
+

5281250ψ2
8ψ12

387420489

+
2852390450ψ2

9 ψ12

387420489
+

18050ψ2
10ψ12

4782969
+

3050450ψ2
11ψ12

4782969
−

245472500ψ8ψ9ψ12

387420489
−

617500ψ8ψ10ψ12

43046721

+
8027500ψ9ψ10ψ12

43046721
+

14350700ψ8ψ11ψ12

43046721
−

186559100ψ9ψ11ψ12

43046721
−

469300ψ10ψ11ψ12

4782969

+
553779200ψ2

8 ψ13

387420489
+

553779200ψ2
11ψ13

43046721
−

1107558400ψ9ψ10ψ13

129140163
+

12201800ψ2
8ψ14

43046721

+
11409561800ψ2

9 ψ14

387420489
+

72200ψ2
10ψ14

4782969
+

21125000ψ2
11ψ14

43046721
−

746236400ψ8ψ9ψ14

129140163
−

1877200ψ8ψ10ψ14

14348907

+
32110000ψ9ψ10ψ14

43046721
+

57402800ψ8ψ11ψ14

43046721
−

981890000ψ9ψ11ψ14

129140163
−

2470000ψ10ψ11ψ14

14348907

+
108160000ψ2

8 ψ15

387420489
−

82201600ψ2
11ψ15

14348907
−

2513638400ψ8ψ9ψ15

387420489
−

6323200ψ8ψ10ψ15

43046721

+
138444800ψ9ψ10ψ15

129140163
+

2513638400ψ9ψ11ψ15

129140163
+

6323200ψ10ψ11ψ15

14348907
+

16055000ψ2
8ψ16

129140163
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+
11409561800ψ2

9 ψ16

387420489
+

72200ψ2
10ψ16

4782969
+

16055000ψ2
11ψ16

14348907
−

1610299600ψ8ψ9ψ16

387420489
−

4050800ψ8ψ10ψ16

43046721

+
130941200ψ9ψ10ψ16

129140163
+

57402800ψ8ψ11ψ16

43046721
−

1610299600ψ9ψ11ψ16

129140163
−

4050800ψ10ψ11ψ16

14348907

+
164403200ψ2

8 ψ17

129140163
−

216320000ψ2
11ψ17

43046721
−

5027276800ψ8ψ9ψ17

387420489
−

12646400ψ8ψ10ψ17

43046721

−
276889600ψ9ψ10ψ17

129140163
+

5027276800ψ9ψ11ψ17

129140163
+

12646400ψ10ψ11ψ17

14348907
. (A.13)
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